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ABSTRACT

Our work deals with the classical problem of merging het-
erogenous and asynchronous parameters. It's well known
that lips reading improves the speech recognition score, spe-
cially in noise condition ; so we study more precisely the
modeling of acoustic and labial parameters to propose two
Automatic Speech Recognition Systems :

- a Direct Identi�cation is performed by using a classical
HMM approach : no correlation between visual and acous-
tic parameters is assumed.

- two correlated models : a master HMM and a slave HMM,
process respectively the labial observations and the acoustic
ones.

To assess each approach, we use a segmental pre-processing.
Our task is the recognition of spelled french letters, in clear
and noisy ( coktail party ) environments. Whatever the
approach and condition, the introduction of labial features
improves the performances, but the di�erence between the
two models isn't enough su�cient to provide any priority.

1. INTRODUCTION

It's well known that lip reading improves the human speech
recognition performance, crucially in noise conditions. Con-
sequently, the multimodal aspect of the speech perception
has been widely studied, specially these bimodal, optic and
acoustic, stimuli, and the corresponding visual and auditory
systems [9], [5] during the last years.

More recently have appeared Automatic Speech Recogni-
tion system which integrate acoustic and visual speech sig-
nals. The approaches are classical : Arti�cial Neural Net-
works [2] , Hidden Markov Models are the most currently
used. In the last category, we �nd the following systems :

� Direct Identi�cation (DI) Model where only one HMM
is used and its input observation vectors are the sim-
ple concatenation of the acoustic and visual vectors,
considered as independent [1].

� Two independent HMMs processing separately the
data 
ows ; then a decision rule is applied on each
score [7].

� An HMM product is built from a visual HMM and

an acoustic HMM ; the data are processed simultane-
ously [8]

These approaches don't take the anticipation and retention
phenomena between the phonatory organs into account, ex-
cept in the last case where it is trained automatically. The
conclusions remain shy. Our work deals with another way
of combining the labial and acoustic informations, and han-
dling the asynchrony. We propose a segmental analysis to
process both acoustic and labial informations. Then we
study two linguistic decoders : the �rst one is the classical
DI model and the second one is based on two correlated
parallel HMMs, in order to exploit viseme units and acous-
tic pseudo-diphone units asynchronously.

We have assessed and compared our systems using a con-
nected spelled french letter recognition task. Many experi-
ments have been performed in clean and noisy environments
(cocktail party noise), to �x up the recognizers.

2. TWO SEGMENTAL MODELS : DI AND

MASTER-SLAVE MODELS

As we say previously, to merge acoustic and labial features,
we suggest and compare two systems. Each one involves
basically two components, a segmental pre-processing and
a statistical linguistic decoder, for which we study a Direct
Identi�cation Model and a Master-Slave Model.

� 2.1. The signal pre-processings

The pre-processing is shared by the two proposed rec-
ognizers. The acoustic signal is automatically seg-
mented by the Forward-Backward divergence method
[10], without a priori knowledge. A sequence of acous-
tic steady and transient segments are obtained (Figure
1). A 16ms window is centered on each segment and a
cepstral analysis is performed to provide 8 MFCC and
the energy E. A regression upon the adjacent windows
gives the derivatives of these parameters (8 �MFCC,
�E).

The visual input consists of three parameters carefully
extracted from a front view of the speaker lips [6]. They
correspond to the three main characteristics of lip ges-
tures [3], namely internal lip width A and height B, and
intero-labial lip area S. They are stored every 20 ms
along the speech waveform. The boundaries given by
the acoustic segmentation are projected on the labial
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Figure 1. Segmental pre-processing of the acoustic signal and the noisy signal (cocktail party SNR= 10dB),

the lip width and the lip height curve of the sentence "VNDI" /ve ndei/. The trajectories found by the MS

model Viterbi algorithm are mentionned in terms of pseudo diphones units, (a) in clean conditions (b) in noisy

environnements (10dB).

8MFCC 8MFCC+T 8MFCC+T+E 8MFCC 8MFCC+T+E 8MFCC+T+E+4�MFCC
+A+B +A+B +A+B

clean
conditions 88% 93% 93% 95% 96% 96%

noise
SNR=10dB 80% 86% 87% 86% 88% 91%

Table 1. Recognition Rates using the Direct Identi�cation Model.

signals, and for each segment, means and derivatives
(Â,B̂,Ŝ, �A,�B, �S) are computed.

Finally, the pre-processing module provides to the de-
coder, for each segment, an input vector of 25 com-
ponents, corresponding to 18 acoustic coe�cients, 6
labial ones, at which the segment duration (T in ms) is
added. The pre-processing is used during the training
phase and the recognition phase.

� 2.2. The Master Slave HMM

The statistical model of the linguistic decoder is based
on two correlated parallel HMMs (Figure 2):

{ the Master HMM is a classical HMM of three states
and three pdfs, which correspond to characteristic
visemes : open (o), semi-open (so) and close (c)
lips. The observation vector is composed of the

6 labial coe�cients per segment (Â,B̂,Ŝ, �A,�B,
�S).

{ the Slave HMM is built hierarchically by intro-
ducing as elementary units the pseudo-diphones,
ie. the steady parts of phone or the transitions
between two phones. Each unit is modeled by a
very simple HMM (1 pdf per model) and transient
ones may be omitted. Each word of the applica-
tion is described with these units, taking variable
pronounciations and coarticulations into account.
The slave observation vector consists of the acous-
tic vector and the segment duration (8 MFCC, E,
8 �MFCC, �E, T).

The originality of this approach is that the parameters
(transition matrix and pdfs) of the acoustic HMM are
probabilistic functions of the states of the mas-

ter model. The theorical properties may be found



Figure 2. A exemple of Master-Slave HMM corresponding to the modeling of the word \B" = /b//e/. Each pdf

and each transition probability of the slave HMM depend of the parameter X of the Master HMM, X 2 fso; o; cg

8MFCC 8MFCC+T+ 8MFCC+T+E 8MFCC+T+E+4�MFCC
+A+B +A+B +A+B +A+B

clean
conditions 92% 93% 93% 95%

noise
SNR=10dB 90% 88% 88% 88%

Table 2. Recognition Rates using the Master Slave Model.

in [4].

� 2.3. The Direct Identi�cation Model

The DI Model is a classical HMM. We retain the same
topology as the Slave Model one. The observation vec-
tor is the concatenation of the labial and acoustic ones,
which are assumed independent.

For each approach, pdfs are simple gaussian laws with
diagonal covariance matrix.

3. EXPERIMENTS AND RESULTS

Our experimental task is the recognition of the 26 french
spelled letters. The sentences are sequences of four con-
nected letters. The training database is composed of 158
sentences (632 letters) and the test one of 48 sentences (192
letters); the experiments are mono speaker.
Many experiments are performed to �nd the best con-

�guration of the Master-Slave recognizer : it appears that
three pdfs are su�cient to characterize the labial informa-
tion, an increase of the pdf number or a more complex topol-
ogy don't improve signi�cantly the performances. (All the
Master Slave Model results reported in this paper are issued
from a labial model of three states).

An other sequence of experiments are performed to �nd
the best family of acoustic and labial parameters:

- When we use the parameter S (alone or with A and
B), no improvement is observed; this fact corroborates the
correlation between these parameters (S=kAB, where k is

speaker dependent).

- We note no signi�cant performance increase when we
add all the derivative parameters (acoustic and labial)
though they are very useful in classical centisecond HMM.

To con�rm the relevance of the visual information in noisy
environment, we have added a "cocktail party" noise to the
acoustic signal with a 10 dB SNR. The segmentation results
are quite robust as the recognition rates. The more signi�-
cant results are reported on tables 1 and 2.

The di�erence between the Direct Identi�cation and the
Master Slave approaches isn't signi�cant, in view of the con-
�dent interval, it's di�cult to validate one of them. In clean
conditions, the best recognition rate is 96% for the DI model
and 95% for the MS model, with the same input vectors
(8MFCC, T, E, 4�MFCC, A, B). In noisy environnement,
the best recognition rate is 90% for the two approaches, the
inputs are di�erent: 8MFCC, T, E, 4�MFCC, A, B for the
DI model and 8MFCC, A, B for the MS model.

We mustn't forget that the number of parameters to be
learned is more important for the MS model than for the
DI model, and our database is too limited to correctly learn
much more ones. It may be an explanation for the small
recognition rate di�erence between the two models, and
the relative stability of the MS model performances when
the input vector dimension increases. Other database are
presently recorded, and future experiments will lead us to



conclude.

4. CONCLUSION

In every con�guration (acoustic parameters, environments),
integrating the visual information improves greatly the
recognition performances. It's a promising research area
to obtain more robust recognition systems. So we continue
our study with the collaboration of phonetician experts to
increase our knowledge about the correlation between visual
and acoustic features, and to improve our statical models.
New corpora will be also studied.
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